If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-4900=0
a = 1; b = -10; c = -4900;
Δ = b2-4ac
Δ = -102-4·1·(-4900)
Δ = 19700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19700}=\sqrt{100*197}=\sqrt{100}*\sqrt{197}=10\sqrt{197}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{197}}{2*1}=\frac{10-10\sqrt{197}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{197}}{2*1}=\frac{10+10\sqrt{197}}{2} $
| 59-37=k | | 1=2.81x+3.10 | | 7x8=6x8 | | (x)=0.32x3-5x-250 | | h-11=19 | | (x)=0.32x3-5x-250. | | S(x)=0.32x3-5x-250. | | 5x+12=x+34 | | x3+5x2+17x+-13=0 | | w-119=447 | | (x)=-x4+30x2-120, | | 4s+20=116 | | 31=z/23 | | 3a+12=-2a-18 | | V(x)=(8-2x)(12-2x) | | 10x(2x-14)=29x^2-100 | | (x)=(8-2x)(12-2x)(x) | | 1/6*x+2/3*x=5 | | V(x)=(8-2x)(12-2x)(x) | | r=28+10 | | 12/60=6/x | | f=64+8 | | 3y-8=5y+10 | | 6x/5+5=45 | | 12.2=-0.6x+17 | | 9(x-3)/6=6(x-2)/2 | | d+19=88 | | 22/2=11/x | | a÷4=1=1 | | 1/2a=2/3 | | (x-5)^2+2=11 | | c=63+35 |